This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 19 February 2013, At: 09:26

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl18

Synthesis and Properties of Liquid Crystals with Fluorinated Terminal Substituents

A. I. Pavluchenko ^a , N. I. Smirnova ^a , V. F. Petrov ^a , Yu. A. Fialkov ^b , S. V. Shelyazhenko ^b & L. M. Yagupolsky ^b

^a Organic Intermediates and Dyes Institute, Moscow, 103787, USSR

^b Institute of Organic Chemistry, Kiev, USSR Ukrianian Academy of Sciences

Version of record first published: 24 Sep 2006.

To cite this article: A. I. Pavluchenko, N. I. Smirnova, V. F. Petrov, Yu. A. Fialkov, S. V. Shelyazhenko & L. M. Yagupolsky (1991): Synthesis and Properties of Liquid Crystals with Fluorinated Terminal Substituents, Molecular Crystals and Liquid Crystals, 209:1, 225-235

To link to this article: http://dx.doi.org/10.1080/00268949108036197

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1991, Vol. 209, pp. 225-235 Reprints available directly from the publisher Photocopying permitted by license only © 1991 Gordon and Breach Science Publishers S.A. Printed in the United States of America

Synthesis and Properties of Liquid Crystals with Fluorinated Terminal Substituents

A. I. PAVLUCHENKO,† N. I. SMIRNOVA† and V. F. PETROV†

† Organic Intermediates and Dyes Institute, Moscow 103787, USSR

and

YU. A. FIALKOV, \$\pm\$ S. V. SHELYAZHENKO and L. M. YAGUPOLSKY

‡ Institute of Organic Chemistry, Kiev, USSR Ukrianian Academy of Sciences.

(Received July 26, 1990)

The paper reports synthesis of LC derivatives of different chemical classes containing terminal groups $-OCHF_2$, $-OCF_3$, $-SCHF_2$, $-OC_nF_{2n+1}$ and $-C_nF_{2n+1}$ and indicates their phase transition points and physico-chemical properties.

Keywords: synthesis, physical-chemical properties, fluorinated terminal groups

INTRODUCTION

The overwhelming majority of modern LCDs are based on the twist-effect¹ and require adequate LC materials of positive dielectric anisotropy ($\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp} > 0$). The most common way to obtain LC compounds with light positive $\Delta \varepsilon$ is to introduce polar groups such as —CN, —NCS and F into the terminal position of the LC molecule.

This paper presents synthetic scheme and physico-chemical properties of LC derivatives of different chemical classes containing terminal groups $-OCHF_2$, $-OCF_3$, $-SCHF_2$ and $-OC_nF_{2n+1}$ and $-C_nF_{2n+1}$.

RESULTS AND DISCUSSION

Experimental

The pyridine derivatives were obtained using the following general synthetic scheme²: diene condensation of the corresponding enamine with 1-acryloyl-4-substituted benzene, followed by reaction of the resulting 3-alkyl-6-(4-P-phenyl)-3,4-dihydro-

TABLE I

	Physico-c	hemical pro	Physico-chemical properties of Liquid Crystalline compounds	spunodwo				١
Formula	×	×	Mesophase(s), °C	T _{ct.} , °C	Δε,	Δn ,	ν , mm ² /s,	
1	2	3	4	5	9	7	8	1
$R \leftarrow - X$	$c_{3}H_{7}$	0 CF $_3$	C22.0S65.1I	-45	13.2	0.134		
ļ ,	-)	OCHF,	C14.2S37.5I	7	17.7	0.160	11.3	
		NCS	C64.0S _A 99.0I					
		CN	C43.4N43.8I	41.5	29.4	0.239	42.0	
	$C_{\xi}H_{1,1}$	0 CF $_3$	C18.6S _R 38.5S _A 52.4I	-24	11.8	0.074		
	1	OCHF,	C26.0S43.6I	6-	15.9	0.125	12.0	
		SCHF,	C2.5I	-17	22.9	0.133	0.6	
		NCS	C34.0S _A 98.5I	29	15.5	0.220	18.0	
		CN	C33.6N43.5I	42	18.9	0.214	50.0	
		ĮΞų	C28.1I	24	9.8	0.074		
		$c_{6}^{\mathrm{F}_{13}}$	C81.1S _B (74.6)I	67	0.7	0.142		
		CH13	C15.0S _A 33.0I					
	C_7H_15	0 CF $_3$	C24.0S44.3I	-17	8.3	090.0		
		0 CHF $_2$	C22.1S46.1I					

1	2	က	4	5	9	7	∞
$R \stackrel{\text{\tiny A}}{\longleftarrow} V$	C ₇ H ₁₅	0C ₇ F ₁₅	C53.1S _A 111.7I				
		0C ₇ H ₁₅	$C24S_{H}^{31.5}S_{G}^{40.3}S_{F}^{53.0}S_{C}^{53.0}$				
		NCS	$C26.1S_{A}99.2I$				
$R \stackrel{\text{\tiny A}}{=} V$	$^{C_7H_15}_{Y=F}$	$^{0C_{7}F_{15}}$	C32.5S _A 86.11	37	7.0	0.040	
	C_7H_{15} Y=F	000000000000000000000000000000000000	C28.1S _A 49.1I	7	4.2	0.113	
	CH ₃ SCH ₂ Y=H	OCF ₃	C42.5I				
	$\mathrm{CH_2}$ =CH(CH ₂) ₂ $_{\mathrm{Y}}$ =H	OCF ₃	C14.3S42.9I				
	$CH_2 = CH(CH_2)_2$ $Y=H$	0 CHF $_2$	C32.2S42.9I	1.			
	C_2H_5 C_1H_4 CH_3 CH_3	OCHF ₂	C54.5I				
	C_8H_17 $Y=F$	ochr ₂	C15I				

TABLE I (continued)	R X Mesophase(s), $^{\circ}$ C $T_{cl.}$ $^{\circ}$ C $\Delta\epsilon$, Δn , ν , mm ² /s,	2 3 4 5 6 7 8
	rmula	

		G	TOTAL (Commune)				
Formula	×	×	Mesophase(s), °C	T _{ct.} , °C	Δε,	Δn ,	ν , mm ² /s,
	2	3	4	5	9	7	8
$R \leftarrow \bigcirc \frown A - X$	C ₅ H ₁₁	SCHF ₂	C50.8I C96.0S _A (93.5)N109I	-17	14.7	0.134	39.0
$R \leftarrow \bigvee_{i=N} X$	c_{5} H $_{11}$	OCHF ₂ SCHF ₂	C86.6I C95.0I	-22 -40	10.9		
R-⟨}-C=C-⟨}-X	c_5 H $_{11}$	OCHF ₂	C28.1S37.8I	28	8.8	0.180	
R-CA-CA-X	$c_8^{H_{17}}$	0007^{2}	$c53.0S_{A}64.2I$				
R-CO-X	$c_{7}^{H_{15}}$	0 CHF $_2$	C10.8N31.6I	26	3.8	0.063	14.0
A-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C.H.	OCHF	C-14.9I	-40	8.3	0.044	5.0
	3 /	$SCHF_2$	C12.5I	-56	10.6	0.044	18.5
		CS	C43.0N45.01		13.5	0.130	
	C_7H_{15}	$OCHF_2$	C7.0I	-	5.6	0.055	8.0

1	2	3	7	5	9	7	ω
R-CI-CI-x	C3H7	0 CF $_3$	C36.3S _B (35)I				
		0 CHF $_2$	C29.1I	-14	17.2	0.093	
	$c_{5H_{11}}$	0°	C23.6S _B 34.9I	-24	10.0	0.040	
	 	0 CHF $_2$	C23.0S(4.0)N(8.0)I	-36	14.6	0.044	0.6
		$SCHF_2$	C42.5I	-29	16.1	0.050	
		CN	C57.0N(48)I		32.0	0.140	
;	C_7H_15	0 CHF $_2$	C24.6S(22.7)N24.3I	21	9.6	0.044	12.4
R-C-X	c_3H_7	0 CF $_{3}$	C43.1S48.2I	-17	18.9	0.134	
1	-)	0 CHF $_2$	C40.1I				
		SCHF ₂	C53.2I	-16	26.9	0.149	
	C_5H_{11}	OCF	$C32.0S_A45.2I$	9	18.5	0.094	
	1	OCHF,	C20.1S24.0I	-5	20.6	0.123	
		$SCHF_{2}$	C43.1I	-16	22.7	0.130	
		CN	C71N(53.3)I		34.0	0.220	55.0
	$c_{8}H_{17}$	0 CHF $_2$	C26.3S31.6I	-3	13.0	0.104	
	; •	$^{\mathrm{CC}_{9}\mathrm{F}_{19}}$	$C65.1S_{A}115.1I$				

TABLE I (continued)

Formula	R	×	Mesophase(s), °C	T _{cl.} , °C	Δε,	Δn,	ν, mm²/s,
1	2	3	4	5	9	7	8
R-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$C_{\xi}H_{11}$	OCHF,	C69.5S119.6N167.5I	137	7.6	0.154	28.0
) 	1	SCHF,	C56.2S94.7N114.0I	105	11.4	0.174	
		CN	C96.0N222.0I		12.0	0.190	
	$c_3^{\rm H_7}$	0 CHF $_2$	C82.0S121.1N169.4I	156	10.2	0.170	
R-C-C-X-X	c_3 H $_7$	OCHF ₂	C50.5N118.4	110	12.3	0.139	
$R \longrightarrow C \longrightarrow X$	С ₃ н ₇	0 CHF $_2$	C50.8S69.2N172.2I	155	8.3	0.114	23.0
R-C-C-x	c_5 H $_{11}$	0 CHF $_2$	C35.0N148.2I	123	11.2	0.090	26.0
$\mathbb{R} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{X}$	$c_3^{H_7}$	0 CHF $_2$	C36.7S96.4N167.7I	165	8.9	0.154	
$R \longrightarrow CH_2O \longrightarrow X$	c_5 H $_{11}$	0 CHF $_2$	C52.0S76.7N142.5I	139	7.2	0.094	

1	2	က	4	Ŋ	9	7	œ
$R \leftarrow = N \leftarrow X$	С ₅ Н,1	OCF.	C57.5N63.2I	33	13.3	0.104	
l	1	OCHF,	C61.8N(59.1)I	64	10.1	0.130	
		SCHF ₂	C40.9I	9	16.0	0.130	
		CN	C96.2N98.0I	106	19.6	0.214	
		NCS	C92.0S104.0N115.1	107	15.3	0.254	
		Ĩ±,	C65.0N(55.1)I	31	10.7	0.113	74.0
	$c_{5^{H}11} \bigcirc$	0 CHF $_2$	C121.0N204.1I	179	10.9	0.190	
R-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	c_{5} H $_{11}$	0 CHF $_2$	C58.1S ₁ 173.7S ₂	159	10.9		
	Ç	Ę	235.51 657 05141 91	, ,	3 21	97.5	
v \ -\ N-\ \ \ v	6 ⁿ 7	ocr ₃	C37.03101.31	134	10.0	0.140	
		SCHF ₂	C91.45152.0N1/6.61 C69.1S111.1N131.4I	125	18.2	0.149	
$R \longrightarrow (-1)^{-1}X$	C,H,	0 CF $_{3}$	C35.1S149.2N154.8I	107	10.6	0.123	
) i	r	OCHF,	C57.1S135.7N165.3I	111	13.8	0.154	
$R \leftarrow \bigcirc \leftarrow \bigcirc A$	$^{\rm C_4H_9}$	$\frac{2}{0$ CHF $_2$	C39.6S78.3N136.4I				

2-N-pyperidine-2H-pyrans with hydroxylamine hydrochloride. Similarly, derivatives of 5,6,7,8-tetrahydroquinoline were prepared. The dioxane derivatives were synthesized by common procedure from corresponding *p*-substituted aldehydes.^{3,4} The pyrimidine derivatives were obtained from corresponding *p*-substituted benzamidine hydrochloride using the general synthetic scheme. The compound's structures were confirmed by NMR analysis. The element analysis proved satisfactory for all derivatives.

Mesomorphic and Physico-Chemical Properties

Procedures for measuring phase transition points, as well as dielectric, optical and viscous properties of liquid crystal compounds, are described in detail in Reference 5. Phase transition temperatures for the synthesized compounds are given in Table I along with clearing points, dielectric anisotropy $\Delta \varepsilon$, optical anisotropy Δn and kinematic viscosity ν (at 20°C) obtained by extrapolation from the corresponding values for mixtures with ZLI-1132, as well as the same parameters for some known compounds taken from literature.

As follows from Table I, clearing points for pyridine derivatives of general formula (I) grow depending on the type of the terminal substituent as follows:

$$R-\text{\tiny N}-\text{\tiny N}-\text{\tiny N}-\text{\tiny N} \text{\tiny (I): $-F$}<-SCHF}_2<-OCHF}_2<-CN<-OCF}_3<-NCS$$

for series R-
$$-$$
- $-$ X (II): -SCHF $_2$ <-OCF $_3$ <-OCHF $_2$ <-CN

for series R-
$$\sqrt{N}$$
- \sqrt{N} -X (III): -OCHF $_2$ <-OCF $_3$ <-CN

for series R-
$$-$$
- $-$ X (IV): -SCHF $_2$ <-OCHF $_2$ <-CN

for series R-CO-X (V):
$$-OCHF_2 < -OCF_3 < -CN$$
 (VI): $-SCHF_2 < -F < -OCHF_2 < -OCF_3 < -CN < -NCS$ for series R-CO-X

Replacement of the —CN group by —OCF₃, —OCHF₂ or —SCHF₂ results in lower melting points, while introduction of — C_nF_{2n+1} and OC_nF_{2n+1} leads to a significant growth of clearing points and disappearance of polymorphism.

Table II gives measured values ε_{\parallel} , ε_{\perp} and $\Delta\varepsilon$ for the series —OCHF₂ and —SCHF₂ derivatives belonging to different chemical classes.

In Table III values of dielectric constant $\epsilon_{isotr.}$ are given measured in the isotropic phase at $T = T_{cl.}$ for the fifth homolog series of polar derivatives having different chemical structures.

$$\varepsilon_{\text{isotr.}} \approx \varepsilon_{\text{av.}} = \frac{2\varepsilon_{\perp} + \varepsilon_{\parallel}}{3}$$

Study of dielectric properties in the isotropic phase allows the increase of number of compared substances by adding nonmesomorphic compounds as well as those having only a smectic phase.

As follows from Tables I-III, for the compounds whose dielectric properties were measured, a correlation with their calculated counterparts is observed permitting us to include in the comparative analysis of dielectric characteristics those liquid crystals for which calculation is the only possible way to evaluate their properties. According to Maier and Meier, dielectric anisotropy of LCs with polar molecules depends on polarizability of the molecule, magnitude of dipole moment, degree of ordering S and angle between dipole moment and axis of maximal polarizability of the molecule. Tables I-III show that for definite chemical structure

TABLE II

Dielectric constants of some polar compounds

N Formula	ε	εμ	Δε	$\tau = T/T_{cl.}, K$
1. C ₅ H ₁₁	6.8	3.3	3.5	0.88
2. c_5H_{11} ———————————————————————————————————	12.1	4.8	7.3.	0.85
3. c_5H_{11} ———————————————————————————————————	6.5	4.8	2.5	0.85
4. c_5H_{11} ———————————————————————————————————	6.2	3.8	2.4	0.85
5. C ₅ H ₁₁	7.4	3.6	3.8	0.95
6. c ₃ H ₇ -\\\\\	8.7	4.6	4.1	0.95
7. с ₃ н ₇ -\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	5.0	2.8	2.2	0.85
8. c_3H_7 - \bigcirc - \bigcirc - \bigcirc -och F_2	6.9	3.3	3.6	0.85
9. c_4H_9 ————————————————————————————————————	11.1	5.7	5.4	0.95
${\scriptstyle 10.c_4H_9-\longleftarrow-\stackrel{N}{\longleftarrow}-SCHF_2}$	10.5	5.0	5.5	0.95
11.C ₅ H ₁₁ -\(\sigma - \sigma	8.4	4.0	4.4	0.85

TABLE III

Permittivity results for some polar compounds.

N Formula	$ \varepsilon_{isotr.}, T = T_{cl} $
1. C ₅ H ₁₁ -\(\)-OCHF ₂	5.9
2. c_5H_{11} c_0 $ -$	11.2
3. C_5H_{11} \sim OCHF ₂	10.5
4. C ₅ H ₁₁ -<->-SCHF ₂	11.6
5. C_5H_{11} \leftarrow OCHF ₂	10.1
6. C_5H_{11} $\sim N$ $\sim N$ $\sim N$ $\sim N$	10.6
7. C_5H_{11} \leftarrow $-coo$ \leftarrow $-cohF_2$	6.4
8. C_5H_{11} \leftarrow \sim	17.4
$\mathbf{P.} \mathbf{C_5H_{11}} \leftarrow \mathbf{N} - \mathbf{NCS}$	9.2
10. C_5H_{11} \leftarrow \sim \sim \sim \sim \sim \sim \sim	8.5
11. C ₅ H ₁₁ -⟨)-C≡C-⟨)-OCHF ₂	5.7
12. C ₅ H ₁₁ -C ₀ -SCHF ₂	10.6
13. C ₅ H ₁₁ -(-)-(-)-SCHF ₂	12.7
14. C ₃ H ₇ -\(\sigma\)-SCHF ₂	6.4
15. C ₃ H ₇ -(\(\) -OCHF ₂	6.3
16. С ₃ H ₇ -< <u></u> -SCHF ₂	11.3

TABLE III	(continued)

N Formula	$ \varepsilon_{\text{isotr.}}, T = T_{\text{cl.}} $
17. C ₅ H ₁₁ -CN	12.4
18. C ₅ H ₁₁	8.8
19. C ₅ H ₁₁	7.9
20. c ₅ H ₁₁ -(-)-F	5.2

of LC, its dielectric anisotropy as a rule decreases in the same sequence as values of dipole moments for terminal groups —CN, —NCS, —OCHF₂, —OCF₃ and F diminish: 4.05 D, 3.59 D, 2.46 D, 2.36 D and 1.47 D, respectively.^{7,8}

The data given in Table I show that replacement of —CN group by terminal substituents —OCF₃, —OCHF₂, —SCHF₂ or — C_nF_{2n+1} results in lower values of optical anisotropy and kinematic viscosity.

CONCLUSION

The discussed LC compounds with fluorinated terminal substituents represent a new, promising class of liquid crystals whose characteristics allow to consider them as most suitable components to be used for development of liquid crystal materials.

Acknowledgment

The authors are grateful to MERCK (Germany) for providing a sample of ZLI-1132.

References

- 1. M. Schadt and W. Helfrich, Appl. Phys. Lett., 18, 127 (1971).
- A. I. Pavluchenko, G. V. Purvanyatskas, N. I. Smirnova and V. V. Titov, Zh. Org. Khim., V.XXII, No. 7, 1524 (1986).
- 3. L. M. Yagupolsky and V. Í. Trotskaya, Zh. Obshch. Khim., 30, No. 3, 3129 (1960).
- Yu. A. Fiaikov and S. V. Shelyazhenko, Inventor's Cert. 1085971, USSR, MKI CO7C 47/575, Otkryt. Izobret., No. 14, 79 (1984).
- 5. M. F. Grebyonkin, V. F. Petrov, V. V. Belyaev et al., Mol. Cryst. Liq. Cryst., 129, 245 (1985).
- 6. W. Maier and G. Meier, Z. Naturforsch., 16a, 262 (1961).
- V. I. Minkin, O. A. Osipov and Y. A. Zhdanov, Dipole Moments in Organic Chemistry, Plenum. New York, 1970.
- 8. A. E. Lutskii, E. M. Obukhova, V. V. Prezhdo et al., Teor. Eksp. Khim., 6, 834 (1970).